Workshop Example Application

- Eagle River (Edwards Reach) Case Study
 - Description
- DFMEA
 - Project Design → Compare RPNs
 - Implement Corrective Actions
 - Improve DFMEA
- Result → lowest risk design

- Eagle River Edwards Reach
 - Reach length 1.6 miles
 - Drainage area 600 square miles
 - Very flat 0.25 percent slope
 - Expansive floodplain along reach

Bounded by two bridges

- Begins 0.5 miles downstream of Edwards Spur Road Bridge
- Ends at Hillcrest Drive Bridge

Adjacent Land Use

- 5000 people live adjacent to reach (gated drives to trailer park courts)
- Upstream Eagle River Preserve (72-acre park)
- Downstream unimproved public boat launch serving 800 people/day
- Used heavily by boating enthusiasts

Goals

- Restore 1.6 miles of river and 80 acres riparian corridor
- Reconnect 50 continuous miles of habitat
- Improve habitat and function of river

Objectives

- Surface Water Quality
- Sediment Control
- Stream Health and Function
- Aquatic Habitat
- Riparian and Wildlife Habitat
- Land Use Management

Five Reaches

- Focus on Reaches 1 and 2
 - Most urban and constricted

Reaches 1 and 2

- Channel Improvements
 - Cross Sectional Geometry Change modifications in width and depth
 - Regime Approach
 - HEC-RAS Hydraulic Modeling
 - Chang's/Parker's regime relationships for sand and gravel bed rivers
 - Longitudinal Slope Adjustment
 - Create positive gradient in Reach 1
 - increase velocities and decrease sediment deposition
 - Cross rock vane grade control structure

Channel Geometry - Cobble/Gravel Bars

- Alternating point bars natural and constructed restore low flow and bankfull regime widths, but still allow flooding
- Constructed out of boulder or log frames with smaller material on top to replicate substrate appropriate to system
- Project Goals surface water quality, sediment control, and improvement of health, function, and habitat

- Bank Stabilization
 - Biotechnical Treatments
 - High erosion areas
 - Geocellular confinement systems, topsoil loaded and vegetated
 - Geogrids
 - Sloping of banks
 - Photodegradable erosion control fabiric to protect until vegetation established
- Project Goals
 - Sediment control, health and function improvement, revegetation for riparian and habitat

- Bank Stabilization
 - Bioengineered Treaments
 - Willow and Pole Treatments (in less severely eroded areas) – with boulder/cobble toe protection
 - Willow wattles and log toes, brush mattressing, brush revetments, soil reinforcement lifts

Photos illustrate, from left to right, typical degraded condition, target bank condition, and newly constructed condition

Aquatic Habitat Features

- Habitat boulders
- Habitat logs and log spurs
- Clusters and keyed into bank

Project Goals

 stream health and function improvement, enhance aquatic habitat, reconnection of fisheries

Native Plantings

Vegetation restoration with native plants

 Ten different plants associations developed (willows, cottonwords and shrubs)

Project Goals – riparain and wildlife and aquatic

habitat

Reach 1 Restoration Components

- Channel Geometry Alternating Bars
- Longitudinal Slope Adjustment
- Cross Rock Vane
- Bioengineered Bank Treatments
- Biotechnical Bank Treatments
- Habitat Boulder, Logs, and Spurs
- Native Plantings
- Current Design Controls for All
 - Incipient Motion and Standard Design Guidelines

DFMEA – Eagle River Reach 1 Design

- In Groups:
 - Each group take 1 (one) design component
 - For your design component identify:
 - Potential Failure Modes
 - Potential Effects of Failure on Other Components
 - Potential Effects of Failure on the Whole System
 - Consequence Rating (C)
 - Potential Causes of Failure
 - Likelihood of Occurrence Rating (O)
 - Current Design Controls
 - Likelihood of Detection Rating (D)
 - Calculate a RPN

DFEMA Initial Design

- Results Initial Design
 - Alternating Bars
 - o RPN's -
 - Long Profile Change
 - o RPNs -
 - Cross Rock Vane
 - o RPNs -
 - Bank Stabilization
 - o RPNs -
 - Habitat Improvements
 - o RPNs -